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Composite Young diagrams, supercharacters of U(M/N) and 
modification rules 

C J Cummins and R C King 
Mathematics Department, University of Southampton, Southampton SO9 5NH, UK 

Received 24 September 1986 

Abstract. The supercharacter of U ( M /  N)  associated with an arbitrary composite Young 
diagram is defined. The distinction is made between standard and non-standard super- 
characters. A modification rule is presented which may be used to express any non-standard 
supercharacter in terms of standard supercharacters. In the case N = 0 the rule reduces 
to the rule already known to be appropriate to U(M).  

1. Introduction 

In recent years composite Young diagrams have been introduced (Dondi and Jarvis 
1981, Balantekin and Bars 1981a, b, Bars et a1 1983, Bars 1984, King 1983a, b) into 
the study of representations of U( M /  N )  and correspondingly of the Lie superalgebra 
A(M - 1, N - 1). Such composite Young diagrams, although not essential to the study 
of U(M) and the corresponding Lie algebra A,,.,-, , have been exploited in this context 
to considerable effect (King 1970, Abramsky and King 1970, King 1971, Black et a1 
1983). In the domain of U( M / N )  where composite Young diagrams cannot be avoided 
by conversion to ordinary Young diagrams it might be expected that they should play 
an important role. 

Unfortunately, however, there exists a complication arising from the fact that Lie 
superalgebras possess atypical irreducible representations (Kac 1978). The work of 
Delduc and Gourdin (1984, 1985) makes it clear that the relationship between the 
supercharacters associated with composite Young diagrams and irreducible super- 
characters is complicated and certainly not one-to-one in the atypical case. In this 
paper, composite Young diagrams are used to define certain supercharacters of 
U( M / N )  which can be thought of as supersymmetric functions of a set of indetermin- 
ates (King 1983b). For composite Young diagrams corresponding to typical irreducible 
representations these supersymmetric functions may be shown to coincide, under the 
identification of the indeterminates with formal exponentials, with the irreducible 
typical supercharacters defined by Kac (1978) for A( M - 1, N - 1). Other composite 
Young diagrams correspond to atypical irreducible representations but the associated 
supercharacters now coincide with a linear combination of irreducible atypical super- 
characters. 

It should be pointed out that although we choose to work with supercharacters 
rather than characters in deference to the fact that supercharacters are associated with 
the fully U ( M / N )  invariant supertrace operation (Balantekin and Bars 1981a), it is 
only necessary to change certain sign factors to pass from supercharacters to characters 
and vice versa. These sign changes will be referred to where appropriate in the text. 
It suffices to say that one advantage of the Young diagram approach adopted here is 
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that these sign factors are easy to relate to Young diagram parameters. Moreover, the 
tensor product formula, a key determinantal expansion and the modification rule with 
which this paper is concerned are all valid for both characters and supercharacters. 

As stressed by Delduc and Gourdin (1984, 1985) only a subset of all composite 
Young diagrams is needed to specify all irreducible tensor representations-typical 
and atypical-of U( M /  N ) .  The members of this subset they called legal. Here the 
word 'standard' is preferred and is applied where appropriate to both composite Young 
diagrams and the corresponding supercharacters. Non-standard supercharacters are 
not necessarily zero and when they arise in the consideration of tensor products or 
branching rules they cannot be simply ignored or set aside. Instead it is essential to 
express such non-standard supercharacters in terms of standard supercharacters by 
means of modification rules analogous to those already introduced for U(M), O ( M )  
and Sp(M) (King 1971, Black eta1 1983) and, more recently, for OSp( M / N )  (Cummins 
and King 1987). With this in mind, the properties of supercharacters of U(M/N) 
defined in terms of U( M )  x U( N )  characters are explored by taking the values of M 
and N to be arbitrarily large and then using the known modification rules for U(M)  
and U ( N )  to derive the required modification rules for U(M/N). 

In the next section a reminder is given of the definition of composite Young 
diagrams and the modification rule for U(M) (King 1971) is stated. This is followed 
by a statement of the U( M /  N )  modification rule which it is our intention to prove 
and it is then made clear that this rule carries with it the definition of standardness 
for U( M /  N )  supercharacters. 

The supercharacters of U( M /  N )  associated with Young diagrams are defined 
explicitly in § 3 and the validity of a very important determinantal expansion of 
supercharacters (Balantekin and Bars 1981b) is established. This is used in § 4 in the 
derivation of the modification rule, which is followed in § 5 by some illustrations of 
the application of the modification rule to both typical and atypical non-standard 
supercharacters of U ( M / N ) .  

2. Composite Young diagrams and modification rules 

The composite Young diagram F(?; a ) ,  specified by the pair of partitions a = 
(al, a2, . . .) and T = ( T ~ ,  T ~ ,  . . .), consists of two conventional Young diagrams F ( a )  
and F (  7).  The former is composed of boxes arranged in left-adjusted rows of lengths 
aI, U*, . , . , and the latter of dotted boxes arranged in right-adjusted rows of lengths 
T, , T ~ ,  . . . . The manner of juxtaposition of F ( a )  and F (  T )  to form F(?;  a) is to some 
extent a matter of taste but here the original back-to-back notation (Abramsky and 
King 1970, King 1970) is refined by reflecting the dotted part of the d i a g r x i n  the 
horizontal line at the top of the diagram. By way of illustration, for (?; a) = (3221; 2214) 
the composite Young diagram is displayed in figure 1. 

The character of the irreducible mixed tensor representation of U( M )  corresponding 
to F(?;  a) is conveniently denoted by {?; a}. Such characters of U ( M )  are standard 
if and only if the number of parts a; and T; of the partitions a and T, respectively, 
are such that their sum is less than or equal to M. It should be noted that this is 
precisely the condition that F (  ?; a) fits inside a horizontal strip of depth M. Characters 
not satisfying this condition are said to be non-standard. They are related to standard 
characters via the U( M )  modification rule 

(2.1) {?; a}=(-l)"""'({-h; a - h }  if h = a i + ~ i  - M - 1 2 0  
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1 

Figure 1. 

where a - h and T - h specify diagrams F ( a  - h )  and F (  7 - h )  obtained from F ( a )  
and F ( T ) ,  respectively, by the removal of continuous boundary strips of boxes each 
of length h starting at the foot of the first columns of F (  a )  and F (  T )  and extending 
over c and E columns respectively. The boundary strip is said to be removable if h 3 0 
and if the juxtaposition of F ( a  - h )  and F (  T - h )  yields a regular composite Young 
diagram of the form F ( p ;  a). In such a case {7.-h; U - h }  is to be interpreted as 
{p; a} .  If F ( a  - h )  is irregular in that no partition a exists such that F ( a  - h )  = F ( a )  
or F(T - h )  is irregular in that no - partition p exists such that F ( T  - h )  = F ( P )  then 
the strip h is not removable and { T - h ;  D - h }  is to be interpreted as being identically 
zero. - 

In the case of U(3) and (7; a}  = {3*21; 2214}, for example, it can be sez f i r s t  that 
h = 6 and then from figure 2 that c = 2 and E = 3 leading to the identity {3*21; 2*14} = 

If necessary the modification rule (2.1) should be applied more than once until 
either h < 0 or until the character in question is shown to be zero. This leads immediately 

(21; 2). 

Figure 2. 
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to the U( M )  standardness condition 

In the case of U ( M / N )  a similar notation and terminology may be employed. 
Supercharacters associated with mixed tensor representations of U( M /  N )  are again 
denoted by {?; a}. Such a supercharacter and the associated composite Young diagram 
are said to be U( M /  N )  standard if and only if there exists at least one pair ( j ,  I )  such 
that (Delduc and Gourdin 1984, 1985) 

a j + r ; s M  withj+Z= N + 2  ( 2 . 3 )  

where a: and ri are the lengths of the j th  and Zth columns of F ( a )  and F ( r ) ,  respectively. 
The U( M /  N )  modification rule for non-standard supercharacters then takes the form 

N+1 

{?;a}= ( - l ) c + 1 { r - h j , l l - h j 2 J 2 -  . . . - h , , / ~ ;  a-hj , / , -h j , l* -  . . . - h j ,  I , }  ( 2 . 4 )  
k = l  ( j , l )  

where 

c = cj, + i;,, + cj* + r, + . . . + Cjk + r,, ( 2 . 5 )  

and 

(2 .6)  hj, = - j +  T;- I -  M + N +  1 2  0. 

The second summation is over all pairs ( j ,  I) of sequences ( j )  = ( j ,  , j z , .  . . , j k )  and 

and 
(Z)=(Z,,Z2 ,..., 1 k )  such that N + 1 2 j l > j 2 > . . . > j k 2 1 ,  1 ~ / 1 < ~ ~ < . . . < 1 k ~ N + 1  

j i + l i =  N + 2  f o r i =  1 , 2 , .  . . , k. ( 2 . 7 )  

The notation is such that U - hjl specifies a diagram obtained from F ( a )  by the removal 
of a continuous boundary strip of length hj, starting at the foot of the j th  column and 
extending over cj columns, whilst r - h specifies a diagram obtained from F (  r )  by the 
removal of a continuous boundary strip starting at the foot of the Zth column and 
extending over E; columns. The order in which these strips are removed from F ( a )  
is given by the sequence ( j )  and the order in which they are removed from F ( r )  is 
given by the reverse of the sequence ( I ) .  By virtue of the constraint ( 2 . 7 )  the strip 
length given by ( 2 . 5 )  simplifies to 

Some examples will be given later which illustrate the use of the modification rule 
(2.4).  For the moment it is to be noted only that this rule implies the validity of the 
standardness condition ( 2 . 3 ) ,  which in turn implies that F (  5 ;  a )  and the corresponding 
supercharacter { 7; a} are standard if and only if F (  b; a )  fits inside a cross, the horizontal 
portion of which has depth M and the vertical portion of which has width N (King 
1986) as shown in figure 3. 
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Figure 3. 

3. Supercharacters of U(M/N) 

It is of course necessary to give a precise definition of the supercharacters {?; a}  of 
U( M /  N )  referred to in the previous section. This can most readily be done by means 
of the formal branching rule from U ( M / N )  to U(M) x U ( N ) :  

{?; a}= ( - l ) IP '+ '{D;  a/a}{Pl/y;  a ' / y }  
0,P.Y 

(3.1) 

where a and p are partitions of la1 and IpI, and a' and p' denote their conjugates. 
For supercharacters that correspond to irreducible representations of U( M /  N )  this 
formula yields the U(M) x U(N)  content of the representation. In the general case 
where { ?; a} is a linear combination of supercharacters of irreducible representations 
of U( M /  N )  (3.1) expresses this linear combination in terms of U( M )  x U( N )  charac- 
ters. Since the characters of U(M) and U ( N )  are themselves symmetric functions, 
(3.1) serves to define the supercharacter (7; a}  of U(M/N)  as what might be called 
a supersymmetric function. The formula (King 1983b) for the corresponding character, 
as opposed to the supercharacter, of U ( M / N ) ,  is obtained from (3.1) merely by the 
omission of the sign factor (-l)lP'-lO1. 

As a consequence of the definition (3.1) it is not difficult to show, by comparing 
products of characters of U( M + N )  expressed in terms of characters of U( M )  x U( N )  
with products of supercharacters of U(M/ N )  expressed via (3.1) in the same way, that 

This product rule, it should be stressed, applies both to characters and supercharacters 
of U(M/N) and is also identical to that which applies to U(M). The only difference 
arises from the proper interpretation of any non-standard terms which may arise on 
the right-hand side. In the case of U(M) (2.1) must be used to make this interpretation, 
whilst for U( M / N )  characters and supercharacters it is the main purpose of this paper 
to prove that (2.4) is the required modification rule. 

In order to carry out this proof it is first necessary to justify the validity of our 
major tool-a determinantal expansion of the supercharacter { 7; a}  due to Balantekin 
and Bars (1981b). 

The character { p }  of an irreducible covariant tensor representation of U(M) is 
nothing other than the symmetric function known as a Schur or S function. It is well 
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{i2; 23}= 

known (Littlewood 1940, p 89) that 

{I2} {I2} (11  
{i} {13} { i 2 }  . (3.9) 

1i41 { i 3 }  

{ p }  = I { 1 4-J+ i } l ,  (3 .3)  

The row and column indices i and j range over the values 1 , 2 ,  . . . , m with m 5 p ,  where 

{ 1 ' } = 0  for t < 0. (3.4) 

The fundamental modification rule for U(M) linking the characters of covariant and 
contravariant representations takes the form 

{i'-'} = ~ ( 1 ' )  for all t (3 .5)  

where E denotes the one-dimensional alternating or determinant character of U( M )  
and E = E - ' .  Clearly (3.4) and (3.5) together imply that 

{ i t }  = {if} = o for both t < 0 and t > M. (3.6) 

Of course (3.5) is just an example of a more general equivalence relation between 
characters of covariant tensor and mixed tensor representations of U( M ) .  Indeed 
quite generally (King 1970) 

{ f ;  U }  = E T 1 { p }  (3.7) 

where F ( p )  is obtained from F(?;  a )  by taking the complement with respect to M of 
the dotted boxes in the first T~ columns of F(?;  a )  and lowering them by reflection in 
their base line to give T ,  columns of undotted boxes adjacent to those of F ( a )  and 
thereby forming the Young diagram F ( p )  (rows not left-adjusted in this case). This 
key result implies firstly that it is not really necessary to use composite Young diagrams 
in the U(M) context, but secondly if they are to be used then the corresponding 
characters may be defined by (3.7). This definition is appropriate whether or not {?; U }  

is standard. Indeed in the non-standard case the modification rule (2.1) for U(M) 
was first derived (King 1971) by making use of (3 .7) .  

Taking the definition (3.7), using the determinantal expansion (3.3) and applying 
(3.5) to all the entries in the first T~ columns of this determinant then yields the identity 
postulated by Balantekin and Bars (1981b): 

{?; U ) =  

{ 1 ":-I} . . .  { i+S+I}  { lo;+s-2} {1u;+s-3)  

{f,;-s) {l";+s-l)  {1";+s-2 } . . .  {le:} 
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identically to the single term of the left-hand side. The formula (3.8) is, needless to 
say, valid for both characters and supercharacters. 

Just as in the case of OSp(M/N)  (Cummins and King 1987), it is the absence in 
the case of U(M/N)  of a totally antisymmetric tensor analogous to E ~ , ~ ~ . . . ~ ~  of U ( M )  
which prohibits the validity of a simple rule like (3.5) for U(M/N). Nonetheless it 
is possible to define the supercharacter E corresponding to the superdeterminant of 
U(M/N)  by means of the formula 

E = { i M } x  ITN}. (3.10) 

This will be employed in the next section which is concerned with the derivation of 
the modification rule (2.4). 

4. Derivation of modification rule 

As in the derivation of the modification rule for OSp(M/N)  (Cummins and King 
1987) it is now convenient to introduce certain matrices whose role will only sub- 
sequently become clear. First of all column matrices C p  and E' are introduced whose 
ath elements are given in terms of U( M /  N )  supercharacters by 

1 (4.1) c; = { i r - a + l  } Cf = { l P + a - l  

where 1 s a s m and p and r are arbitrary integers. From the definition (3 .1 )  it then 
follows that, in terms of U(M) x U( N )  characters, 

and 

where account has been taken of (3.6). 

of U( M) x U( N )  by 
Next define the row matrix R,  whose bth element is given in terms of characters 

R i  ={O} x {l"'} (4.4) 
where 1 s b s m and 1 s 4 S m. It then follows that the product matrices K = R C  and 
K = R E  have matrix elements given by 

and 
m 

K:, = c ( - i )r- '{ i l}  x { F T ;  1 q - I ) .  
1=0 

Now taking the modification rule (2.1) into account 

K :  = { l P + , - '  1 x (0) 
and 

} X { l N )  
E; = { i N + p - q + l  

(4.6) 

(4.7) 

(4.8) 
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for N + 1 S q s m. Hence it can be seen that 
for N +  1 G q s  m. (4.9) 

It should be noted that the m x m determinantal expression (3.8) for the super- 

(4.10) 

and R; = i K , M - N - r  
K : = & f c l - N - P  

character {?; a} has a column structure such that 

{?; U )  = pb,TC?+ eT+l,bCPoh/ 
where 

p b  = ab-T-  b + 1 r b  = T $ - b + 1 +  b - 1 (4.11) 

and 

(4.12) 

The row and column indices a and b range over the values 1 , 2 , .  . . , m where 

m = S + T  with S = u1 and T = T ~ .  (4.13) 

In fact the parameter S may be chosen to be any integer greater than or equal to u1, 
and similarly T may be chosen to be any integer greater than or equal to T ~ .  In what 
follows it is essential to constrain S and T so that 

S a m a x ( a , ,  N+1) T*max(T,, N+1). (4.14) 

With this in mind the next step is the introduction of a matrix D whose matrix 
elements are given by 

- M - N - p ;  
D b c  = &,T 5 + e T +  1 ,c cc + ( e T -  N , c  - T +  1 ,c ) z c  - T+ N + 1 & c b  

+ ( 6  T + l , c  - T+ N + 2 , c ) X c - T  E C Y N - ’ ;  (4.15) 

where 

P :  = P c + N + I  r : =  r c - N - l  (4.16) 

whilst x,  for i = 1,2, . . . , N + 1 are a set of indeterminates with inverses denoted by 2,. 
The final magic ingredient is the very special m x m matrix M with matrix elements 

M a b  = e a , m - N R b m - a + i +  e m - N + I , a a b m - a + l .  (4.17) 

Multiplication of D by M yields an m x m matrix P = M D  which may be naturally 
partitioned into five submatrices as shown in the following diagram: 

T - N - 1  N + l  N + l  S - N - 1  

T p=T-Fl- Z x ]m;N N (4.18) 

< > 

T S 
< * 

m 

The ( m  - N) x ( N  + 1 )  submatrices U and V have matrix elements given by 

(4.19a) M - N - r y  
uij = Pi.,+, = K ~ - , + I  + x , g K m - i + l  
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(4.196) 

for l s i s m - N  and l s j s N + l ,  where 

PY=Pj+T ry = c + T - N - ,  . (4.20) 

Now at last the reward may be reaped for all the previous manipulations. The 
application of (4.9) to (4.19) gives 

U, = xjv, for 1 s i s  m - N, 1 s j s N + 1 .  (4.21) 

It follows further that the m x m matrix P possesses N + 1 pairs of columns with m - N 
elements of one column given by the multiple x, of the corresponding elements of the 
other column of each pair. Therefore subtracting these multiples of columns from 
their partners gives an ( m  - N )  x ( N  + 1 )  block of zeros, and hence 

det P = 0. (4.22) 

However P =  M D  with 

det M = (-l)(m-N)(m+N-1)/2 (4.23) 

as can be seen from (4.7). Thus 

det D = 0. (4.24) 

Moreover as can be seen from (4.15) det D is a polynomial in the indeterminates x, 
and their inverses XI. The expansion of det D in terms of these indeterminates yields 
a sum of 22N+2 determinants. Since det D = 0 for all values of the x, the constant term 
in this expansion independent of all the x, must itself be zero. This term, consisting 
of a sum of 2N+’ determinants, then gives the identity 

(4.25) 

where 

h, = p ,  + ri  - M + N = p: + r, - M + N (4.26) 

and the summation is carried out over all vectors q such that the components 7, are 
0 or 1,  with 7, only allowed to take the value 1 for pairs 

c =  T + j  c = T - 1 + 1  wi th j+ l=  N + 2 .  (4.27) 

For these values of c it follows from (4.11), (4.16) and (4.26) that 

h, = hj, = uj -j+ 7;- 1 - M + N + 1 (4.28) 

as in (2.5). 
The required modification rule (2.4) then follows immediately given the usual 

connection (King 1971) between the removal of continuous boundary strips and the 
regularisation of Young diagrams by the successive transposition of columns. 
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{GI {i31 (11 (0) 
- {i’} {I2) (1) 
- {TI {I3} (1’1 
- NI {I4} {I3} 

+ (1 + x,z,)x,X, (1 +XI%) 

5. Illustration and discussion 

(0) {TI (11 - 
- { O }  (1’) - 

(0) 
(1,) (1) 

= O  (5.2) - -  
- -  

= ( - 1 ) 3  

Figure 4. 
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As a second example consider the U(2/1) supercharacter {%; 322). This time 
(4.24) yields 

- {i2)+zl&{O} {i4}+ z 2 4 )  (1) (0) 
(71 {i3) + T ~ ~ E { O }  { 12) + X , E { O )  (1) 
{a {i’l { 1 3 ) + ~ 1 ~ { 1 )  (1‘) (0) 
- (7) { i4) + x1 E {  1 ’} { i3) + X ~ E { O }  { 1) 
- {Ol { 1 ’} + X, E {  1 3} { 1 ‘} + x2 E{ 1) { 1 2 }  

- 
=o. ( 5 . 5 )  

Setting the constant term to zero gives 

{i2) {i4} (1) (0) - 

(0 (1’) {I2) (11 - 
{O} {i2) {13) {i2) (0) 
- 0) {I4) (17  (1) 
- {15) {I4) {I2)  

(0)  {i4} - (0) - 
- {i31 (0) (1) - 

+ x , T ~  - {I2} (11 {I2) (01 
- 0) {I2) (17 (1) 
- {O) {13) {I4) {I2) 

4-1i5 % 

fx2z2 

Figure 5. 

{i’) {i) (1) - - {0} {i) - - - 
NI (0) - - {i} (0) {i2) - - - 

(01 - {13) - 10) + X 1 ~ , X 2 ~ 2  - - (1) - (0) =o.  
{1’1 (01 (11 - - {I4) (0) (1) - -  

- - {15) (1) {I2) - -  {I3) (1) {1’) 
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then the supercharacter is typical and corresponds to a single typical irreducible 
representation of U(M/N). If it is more than one then the supercharacters are all 
atypical and the correspondence with irreducible representations is more complicated. 

The justification for these remarks lies outside the scope of the present paper but 
will be the subject of a further article in which the precise connection between the 
supercharacters defined here and those of Kac (1978) is discussed in detail. 

The discerning reader will have noticed a degree of freedom in the derivation of 
identities relating supercharacters to one another. The first degree of freedom lies in 
the selection of the constant term independent of all xi in passing from (4.24) to (4.25). 
It would have been possible to pick out, for example, from ( 5 . 5 )  not the constant terms 

Rearranging columns this gives the U(2/1) modification rule 
{i3; 322) = {3i2) 

= 0. 

(5.9) 

which could however have been obtained equally well from (4.25) and correspondingly 
(2.4) through the correct choice of D for the supercharacter {i3; 322}. Thus the 
exploitation of the first degree of freedom in the derivation of the modification rule 
does not lead to any new results. 

However a second degree of freedom lies in the selection of the rightmost N + 1 
columns of the contravariant portion of det D and the leftmost N + 1 columns of the 
covariant portion. It is clear that as long as precisely N +  1 pairs of columns are 
selected, one member of each pair from each portion, then an ( m  - N )  x ( N  + 1) block 
of zeros can be obtained by multiplication of D by M and appropriate column 
manipulations. This then leads to the identity det D=O and hence to alternative 
modification rules and of course alternative definitions of standardness. However these 
definitions are not all equivalent in that a supercharacter which is standard in one 
scheme may well be non-standard and therefore subject to further modification in 
another. Nonetheless the choice of columns made here and the definition (2.2) of 
standardness may be shown to be the best possible (Cummins 1986) in that this is the 
only scheme for which all standard supercharacters remain standard in every alternative 
scheme. There is one important proviso and that is that these schemes are restricted 
to those for which the resulting modification rule has no dependence on the U( M /  N )  
superdeterminant supercharacter E.  That is to say that the modification rules apply 
strictly to that class of supercharacters associated with Young diagrams. Therefore 
with this proviso the ideal modification rule has been derived, namely (2.4). All 
non-standard supercharacters specified by Young diagrams, whether composite or not, 
may be expressed in terms of standard supercharacters by means of (2.4), iterating if 
necessary. 
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